Genetic polymorphisms and acute kidney injury
https://doi.org/10.22627/2072-8107-2025-24-1-51-55
Abstract
Acute kidney injury (AKI) is one of the most serious complications of infectious diseases, occurring in 5% to 30—50% of hospitalized patients. Despite advances in the treatment of AKI, including renal replacement therapy, morbidity and mortality rates continue to rise. There is significant variability in the clinical manifestations of AKI among patients with identical pathology, highlighting the need to study additional factors that influence the severity and outcomes of the disease. Genetic variability, including gene polymorphisms that determine individual characteristics of regulatory mechanisms in kidney damage, may play an important role in this process. This article aims to analyze existing data on the impact of genetic factors on the development and outcomes of AKI, as well as gene polymorphisms that may serve as diagnostic criteria for early detection and risk of AKI. The focus is on genes associated with the inflammatory response, such as TNF-á, IL-1â, IL-6, IL-8, IFN-ã, TGF-â, and IL-10, and their potential role in predisposition to AKI and disease progression. The influence of genetic variations in vasomotor regulatory proteins, such as angiotensin-converting enzyme (ACE) and endothelial nitric oxide synthase (eNOS), on the development of AKI is also discussed. The relationship between polymorphisms in the BCL2 and SERPINA genes and AKI, as well as between polymorphisms in the SERPINA4 and SERPINA5 genes and the development of AKI in COVID-19 patients, is analyzed. Despite numerous studies and identified associations, data on genetic risk factors remain limited and contradictory, underscoring the need for further research. The identification of new genetic markers will help improve diagnosis and provide a personalized approach to the prevention and treatment of AKI, especially in children with a high predisposition to this condition.
Keywords
About the Authors
L. N. MazankovaRussian Federation
Moscow
P. Y. Savinkova
Russian Federation
Moscow
References
1. Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, Himmelfarb J, Collins AJ. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006 Apr; 17(4):1135—42. doi: 10.1681/ASN.2005060668.
2. Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006 Jul; 2(7):364—77. doi: 10.1038/ncpneph0218.
3. Zeng X, McMahon GM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014; 9(1):12—20. doi: 10.2215/CJN.02730313.
4. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter Suppl. 2012; 2(1):1—138. doi: 10.1038/kisup.2012.1.
5. Rahman M, Shad F, Smith MC. Acute kidney injury: a guide to diagnosis and management. Am Fam Physician. 2012 Oct 1; 86(7):631—9.
6. Kaufman J, Dhakal M, Patel B, Hamburger R. Community-acquired acute renal failure. Am J Kidney Dis. 1991; 17(2):191—198. doi: 10.1016/s0272-6386(12)81128-0.
7. Mazankova L.N., Luzan P.Y. Early diagnosis and predicting of acute kidney injury in children with viral gastroenteritis of various agents (Literature review). Detskie Infektsii=Children's Infections. 2023; 22(3):55—61. (In Russ.) doi.org/10.22627/2072-8107-2023-22-3-55-61
8. Savenkova N.D., Pankov E.A. Acute kidney injury unsolved problems in children. Nephrology. 2015; 19(3):9—19. (In Russ.)
9. Rey S.I., Berdnikov GA, Vasina NV. Acute kidney injury in 2020: epidemiology, diagnostic criteria, indications, timing and modality of renal replacement therapy. Russian Journal of Anesthesiology and Reanimatology. 2020;(5):63-69. (In Russ.) DOI: 10.17116/anaesthesiology202005163
10. Clinical guidelines. Acute kidney injury (AKI). Year of approval: 2020 (In Russ.)
11. Lu JC, Coca SG, Patel UD, Cantley L, Parikh CR; Translational Research Investigating Biomarkers and Endpoints for Acute Kidney Injury (TRIBE-AKI) Consortium. Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 2009 Jun; 4(6):1020—31. doi: 10.2215/CJN.05411008.
12. Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR; TRIBE-AKI Consortium. A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. Am J Respir Crit Care Med. 2017 Feb 15; 195(4):482—490. doi: 10.1164/rccm.201603-0518OC.
13. Nartikoeva M.I. The role of gene polymorphism in the treatment of cardiovascular diseases. Modern Рroblems of Science and Еducation. 2020; (6). (In Russ.) doi: 10.17513/spno.30436
14. Kalesnik M.V. Genetic predictors of acute kidney injury development. Journal of Grodno State Medical University. 2022; 20(5):479—484. (In Russ.) doi: 10.25298/2221-8785-2022-20-5-479-484
15. Zuk A, Bonventre JV. Acute Kidney Injury. Annu Rev Med. 2016; 67:293—307. doi: 10.1146/annurev-med-050214-013407
16. Andrianova N.V., Zorov D.B., Plotnikov E.Yu. Inflammation and oxidative stress as targets for the therapy of ischemic kidney injury. Biochemistry. 2020; 85(12):1873—1886. (In Russ.) DOI 10.31857/S0320972520120118
17. Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005 Jan 29—Feb 4; 365(9457):417—30. doi: 10.1016/S0140-6736(05)17831-3.
18. Larach DB, Engoren MC, Schmidt EM, Heung M. Genetic variants and acute kidney injury: A review of the literature. J Crit Care. 2018 Apr; 44:203—211. doi: 10.1016/j.jcrc.2017.11.019.
19. Stafford-Smith M, Podgoreanu M, Swaminathan M, Phillips-Bute B, Mathew JP, Hauser EH, et al. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2005; 45(3):519—30. doi: 10.1053/j.ajkd.2004.11.021.
20. Chugunova O.L. [et al.]. Acute kidney injury in newborns of different gestational age: etiology, pathogenesis, features of clinical and laboratory diagnostics. Pediatrician's Рractice. 2024; (2):42—49. (in Russ.)
21. Dalboni MA, Quinto BM, Grabulosa CC, Narciso R, Monte JC, Durao M, Jr., et al. Tumour necrosis factor-alpha plus interleukin-10 low producer phenotype predicts acute kidney injury and death in intensive care unit patients. Clinical and Еxperimental Immunology. 2013; 173(2):242—9. doi: 10.1111/cei.12100.
22. Susantitaphong P, Perianayagam MC, Tighiouart H, Liangos O, Bonventre JV, Jaber BL. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron. 2013; 123(1—2):67—73. doi: 10.1159/000351684
23. Vilander LM, Kaunisto MA, Pettilä V. Genetic predisposition to acute kidney injury--a systematic review. BMC Nephrol. 2015 Dec 2; 16:197. doi: 10.1186/s12882-015-0190-6.
24. Cardinal-Fernandez P, Ferruelo A, El-Assar M, Santiago C, Gomez-Gallego F, Martin-Pellicer A, et al. Genetic predisposition to acute kidney injury induced by severe sepsis. Journal of Сritical Сare. 2013; 28(4):365—70. doi: 10.1016/j.jcrc.2012.11.010.
25. Treszl A, Toth-Heyn P, Kocsis I, Nobilis A, Schuler A, Tulassay T, et al. Interleukin genetic variants and the risk of renal failure in infants with infection. Pediatric Nephrology (Berlin, Germany). 2002; 17(9):713—7. doi: 10.1007/s00467-002-0935-x.
26. Jaber BL, Rao M, Guo D, Balakrishnan VS, Perianayagam MC, Freeman RB, et al. Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine. 2004; 25(5):212—9. doi: 10.1016/j.cyto.2003.11.004.
27. Boehm J, Eichhorn S, Kornek M, Hauner K, Prinzing A, Grammer J, et al. Apolipoprotein E genotype, TNF-alpha 308G/A and risk for cardiac surgery associated-acute kidney injury in Caucasians. Renal Failure. 2014; 36(2): 237—43. doi: 10.3109/0886022X.2013.835267.
28. Gaudino M, Di Castelnuovo A, Zamparelli R, Andreotti F, Burzotta F, Iacoviello L, et al. Genetic control of postoperative systemic inflammatory reaction and pulmonary and renal complications after coronary artery surgery. The Journal of Тhoracic and Сardiovascular Surgery. 2003; 126(4):1107—12. doi: 10.1016/s0022-5223(03)00396-9.
29. Rivera-Chavez FA, Peters-Hybki DL, Barber RC, O'Keefe GE. Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock. 2003; 20(3):218—23. doi: 10.1097/01.shk.0000079425.52617.db.
30. McBride WT, Prasad PS, Armstrong M, Patterson C, Gilliland H, Drain A, et al. Cytokine phenotype, genotype, and renal outcomes at cardiac surgery. Cytokine. 2013; 61(1):275—84. doi: 10.1016/j.cyto.2012.10.008.
31. Grabulosa CC, Batista MC, Cendoroglo M, Quinto BM, Narciso R, Monte JC, et al. Frequency of TGF- beta and IFN- gamma genotype as risk factors for acute kidney injury and death in intensive care unit patients. BioMed Research International. 2014; 2014:904730. doi: 10.1155/2014/904730.
32. Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, et al. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. Journal of Нypertension. 2002; 20(10):2023—7. doi: 10.1097/00004872-200210000-00022.
33. Popov AF, Hinz J, Schulz EG, Schmitto JD, Wiese CH, Quintel M, Seipelt R, Schoendube FA. The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction. Eur J Cardiothorac Surg. 2009 Oct; 36(4):651—6. doi: 10.1016/j.ejcts.2009.04.049.
34. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990; 86(4):1343—6. doi: 10.1172/JCI114844.
35. Nobilis A, Kocsis I, Toth-Heyn P, Treszl A, Schuler A, Tulassay T, et al. Variance of ACE and AT1 receptor gene does not influence the risk of neonatal acute renal failure. Pediatric Nephrology (Berlin, Germany). 2001; 16(12):1063—6. doi: 10.1007/s004670100028.
36. Pedroso JA, Paskulin Dd, Dias FS, de França E, Alho CS. Temporal trends in acute renal dysfunction among critically ill patients according to I/D and -262A > T ACE polymorphisms. J Bras Nefrol. 2010 Apr-Jun; 32(2):182—94. Doi: 10.1590/S0101-28002010000200007
37. du Cheyron D, Fradin S, Ramakers M, Terzi N, Guillotin D, Bouchet B, et al. Angiotensin converting enzyme insertion/deletion genetic polymorphism: its impact on renal function in critically ill patients. Critical care Мedicine. 2008; 36(12):3178—83. doi: 10.1097/CCM.0b013e318186a299
38. Isbir SC, Tekeli A, Ergen A, Yilmaz H, Ak K, Civelek A, et al. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. The Нeart Surgery Forum. 2007; 10(6):E439—44. doi: 10.1532/HSF98.20071117.
39. Frank AJ, Sheu CC, Zhao Y, Chen F, Su L, Gong MN, Bajwa E, Thompson BT, Christiani DC. BCL2 genetic variants are associated with acute kidney injury in septic shock. Crit Care Med. 2012 Jul; 40(7):2116—23. doi: 10.1097/CCM.0b013e3182514bca.
40. Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Тoxicology 2015; 89(3):289—317. doi: 10.1007/s00204-014-1448-7.
41. Zhou S, Sun Y, Zhuang Y, Zhao W, Chen Y, Jiang B, et al. Effects of kallistatin on oxidative stress and inflammation on renal ischemia-reperfusion injury in mice. Curr Vasc Pharmacol. 2015; 13(2):265—73. doi: 10.2174/1570161113666150204142716.
42. El-Hefnawy SM, Kasemy ZA, Eid HA, Elmadbouh I, Mostafa RG, Omar TA, Kasem HE, Ghonaim EM, Ghonaim MM, Saleh AA. Potential impact of serpin peptidase inhibitor clade (A) member 4 SERPINA4 (rs2093266) and SERPINA5 (rs1955656) genetic variants on COVID-19 induced acute kidney injury. Human Gene (Amsterdam, Netherlands). 2022 May; 32:101023. doi:10.1016/j.mgene.2022.101023.
43. Vilander LM, Kaunisto MA, Vaara ST, Pettilä V; FINNAKI study group. Genetic variants in SERPINA4 and SERPINA5, but not BCL2 and SIK3 are associated with acute kidney injury in critically ill patients with septic shock. Crit Care. 2017 Mar 8; 21(1):47. doi: 10.1186/s13054-017-1631-3.
44. Safdar M, Khan MS, Karim AY, Omar SA, Smail SW, Saeed M, Zaheer S, Ali M, Ahmad B, Tasleem M, Junejo Y. SNPs at 3'UTR of APOL1 and miR-6741-3p target sites associated with kidney diseases more susceptible to SARS-COV-2 infection: in silco and in vitro studies. Mamm Genome. 2021 Oct; 32(5):389—400. doi: 10.1007/s00335-021-09880-6.
Review
For citations:
Mazankova L.N., Savinkova P.Y. Genetic polymorphisms and acute kidney injury. CHILDREN INFECTIONS. 2025;24(1):51-55. (In Russ.) https://doi.org/10.22627/2072-8107-2025-24-1-51-55