The role of TLR-3 in the course and outcomes of rotavirus infection in infants
https://doi.org/10.22627/2072-8107-2022-21-3-5-9
Abstract
It was found that the clinical picture of rotavirus infection in infants with an initially low number of immunocompetent cells expressing TLR-3 does not differ significantly from that of patients with an initially large number of cells expressing TLR-3. When analyzing the treatment, it turned out that antibacterial therapy due to the activation of bacterial microflora was used only in children with an initially low number of immunocompetent cells expressing TLR-3. In the same group of patients, the development of atopic dermatitis and food allergies was noted during catamnestic observation for 6—12 months after rotavirus infection.
About the Authors
S. G. GorbunovRussian Federation
Moscow
L. N. Mazankova
Russian Federation
Moscow
A. N. Os’kin
Russian Federation
Moscow
References
1. Kyu H.H., Pinho C., Wagner J.A. et al. Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013. Findings from the global burden of disease 2013 study. JAMA Pediatrics. 2016; 170(3):267—287. DOI: 10.1001/jamapediatrics.2015.4276.
2. Crawford S.E., Ramani S., Tate J.E. et al. Rotavirus infection. Nature Reviews Disease Primers. 2017; 3(17083):1—16. DOI: 10.1038/nrdp.2017.83
3. Ermolenko K.D., Gonchar N.V., Lobzin Yu.V. Post-infectious gastroenterological pathology’s mechanisms in children with rotavirus infection. Zhurnal Infektologii=Journal Infectology. 2020; 12(5):56—61. (In Russ.)
4. Dukhovlinov I.V., Bogomolova E.G., Fedorova E.A., Simbirtsev A.S. Study of protective activity of candidate vaccine against rotavirus infection based on recombinant protein FliCVP6VP8. Meditsinskaya Immunologiya=Medical Immunology. 2016; 18(5):417—424. (In Russ.)
5. Dong H., Qu S., Chen X., Zhu H., Tai X., Pan J. Changes in the cytokine expression of peripheral Treg and Th17 cells in children with rotavirus enteritis. Exp. Ther. Med. 2015; 10(2):679—682. DOI: 10.3892/etm.2015.2511.
6. Parra M., Herrera D., Jacome M.F., Mesa M.C., Rodriguez L.S., Guzman C. Circulating rotavirus-specific T-cells have a poor functional profile. Virology. 2014; 468—470:340—350. DOI: 10.1016/j.virol.2014.08.020.
7. Lutskiy A.A., Zhirkov A.A., Lobzin D.Yu., Rao M., Alekseeva L.A. Meyrer M. Interferon-γ: biological function and significance for the diagnosis of cellular immune response. Zhurnal Infectologii=J. Infectology. 2015; 7(4):10—22. (In Russ.)
8. Xu J., Yang Y., Sun J., Ding Y., Su L., Shao C., Jiang B. Expression of Toll-like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea. Clin. Exp. Immunol. 2006; 144(3):376—81. DOI: 10.1111/j.1365-2249.2006.03079.x.
9. Villena J., Vizoso-Pinto M.G., Kitazawa H. Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Front. Immunol. 2016; 7:563. DOI: 10.3389/fimmu.2016.00563.
10. Abaturov O.Ye., Stepanova Yu.Yu. Rotavirus-induced activation of defense mechanisms of the adaptive immune system of the child's body. Gastroenterologiya=Gastroenterology. 2015; 1(55):56—61. (In Russ.)
11. Patel M.C., Shirey K.A., Pletneva L.M., Boukhvalova M.S., Garzino- Demo A., Vogel S.N., Blanco J.C.G. Novel drugs targeting tolllike receptors for antiviral therapy. Future Virology. 2014; 9(9): 811—829. DOI: 10.2217/fvl.14.70.
12. Yang J.-Y., Kim M.-S., Kim E., Cheon J.H., Lee Y.-S., Kim Y., Lee S.-H., Seo S.-U., Shin S.-H., Choi S.S., Kim B., Chang S.-Y., Ko H.-J., Bae J.-W., Kweon M.-N. Enteric viruses ameliorate gut inflammation via tolllike receptor 3 and toll-like receptor 7 — mediated interferon-β production. Immunity. 2016; 44:889—900. DOI: 10.1016/j.immuni.2016.03.009.
13. Kobayashi H., Kanmani P., Ishizuka T., Miyazaki A., Soma J., Albarracin L., Suda Y., Nochi T., Aso H., Iwabuchi N., Xiao J.-Z., Saito T., Villena J., Kitazawa H. Development of an in vitro immunobiotic evaluation system against rotavirus infection in bovine intestinal epitheliocytes. Beneficial Microbes. 2017; 8(2):309—321. DOI: 10.3920/BM2016.0155.
14. Reimerink J., Stelma F., Rockx B., Brouwer D., Stobberingh E., van Ree R., Dompeling E., Mommers M., Thijs C., Koopmans M. Earlylife rotavirus and norovirus infections in relation to development of atopic manifestation in infants. Clin. Exp. Allergy. 2009; 39(2): 254—60. DOI: 10.1111/j.1365-2222.2008.03128.x
15. Patel M.C., Shirey K.A., Pletneva L.M., Boukhvalova M.S., Garzino- Demo A., Vogel S.N., Blanco J.C. Novel Drugs Targeting Tolllike Receptors for Antiviral Therapy. Future Virology. 2014; 9(9): 811—829. DOI: 10.2217/fvl.14.70.
16. Pott J., Stockinger S., Torow N., Smoczek A., Lindner C., McInerney G., Bäckhed F., Baumann U., Pabst O., Bleich A., Hornef M.W. Agedependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog. 2012; 8(5): e1002670. DOI: 10.1371/journal.ppat.1002670.
17. Günaydın G., Nordgren J., Svensson L., Hammarström L. Mutations in toll-like receptor 3 are associated with elevated levels of rotavirus- specific IgG antibodies in IgA-deficient but not IgA-sufficient individuals. Clinical and Vaccine Immunology. 2014; 21(3):298—301. DOI: 10.1128/CVI.00666-13.
Review
For citations:
Gorbunov S.G., Mazankova L.N., Os’kin A.N. The role of TLR-3 in the course and outcomes of rotavirus infection in infants. CHILDREN INFECTIONS. 2022;21(3):5-9. (In Russ.) https://doi.org/10.22627/2072-8107-2022-21-3-5-9