Analysis of gene expression in patients during acute cerebral insufficiency and late reconvalescence after severe neuroinfection
https://doi.org/10.22627/2072-8107-2024-23-4-13-17
Abstract
Goal. To analyze gene expression in patients with cerebral insufficiency during the critical period and during late convalescence after severe neuroinfection. Materials and methods. The study involved patients with infectious diseases aged from 3 to 17 years, admitted for treatment to the department of resuscitation and intensive care of the Federal State Budgetary Institution DNACIB FMBA of Russia. Whole blood samples were collected before the start of therapy — «Acute period» and during the period of late convalescence after the disease (9, 12, 13 months). RNA sequencing was performed to analyze differential gene expression. Results. Statistically significant differences in expression in the comparison group «Acute period» and «Late convalescence» were detected in 14 genes. Thus, in the «Acute period» group, 12 genes with decreased expression and 2 genes with increased expression were identified: ANGPTL2, encoding angiopoietin-like protein 2 and PCK1 of the phosphoenolpyruvate carboxykinase enzyme. Of the 14 genes, 5 had unknown functions and unidentified orthologues. Conclusion. The authors suggest that increased expression of the ANGPTL2 gene may be the cause of the consequences of hypoxia, which leads to acute cerebral failure during a severe infectious process. Increased expression of PCK1 may indicate increased brain glucose demand during recovery.
About the Authors
A. A. IgolkinaRussian Federation
Saint-Petersburg
А. V. Kusakin
Russian Federation
Saint-Petersburg
N. V. Skripchenko
Russian Federation
Saint-Petersburg
A. A. Vil'nic
Russian Federation
Saint-Petersburg
L. A. Alekseeva
Russian Federation
Saint-Petersburg
T. V. Bessonova
Russian Federation
Saint-Petersburg
O. V. Goleva
Russian Federation
Saint-Petersburg
N. V. Marchenko
Russian Federation
Saint-Petersburg
M. A. Irikova
Russian Federation
Saint-Petersburg
A. B. Chuhlovin
Russian Federation
Saint-Petersburg
A. V. Krylov
Russian Federation
Saint-Petersburg
E. V. Baziian
Russian Federation
Saint-Petersburg
Y. A. Esmont
Russian Federation
Saint-Petersburg
O. S. Glotov
Russian Federation
Saint-Petersburg
References
1. Ryabov G.A. Logika razvitiya intensivnoj terapii kriticheskih sostoyanij. Anesteziologiya i Reanimatologiya. 1999; 1:10—13. (in Russ.)
2. Skripchenkko N.V., Vilnits A.A., Egorova E.S., Klimkin A.V., Voitenkov V.B., Bedova M.A. Encephalopathies of Critical Conditions: Problem and Solutions. Russian Neurological Journal. 2020; 25(4):51—59. doi.org/10.30629/2658-7947-2020-25-4-51-59 (in Russ.) 3.
3. Shustov E.B. Gipoksiya fizicheskoj nagruzki: izuchenie u cheloveka i laboratornyh zhivotnyh. Biomedicina. 2014; 4:4—16. (in Russ.)
4. Skripchenko NV, Ivanova GP, Scripchenko EY, Egorova ES, Surovtseva AV. Cytoflavin efficacy in the treatment of disseminated encephalomyelitis in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 117(11-2):67-74. doi.org/10.17116/jnevro201711711267-74. (in Russ.)
5. Fedin A.I., Rumyanceva S.A., Piradov M.A., Skoromec A.A., Parfenov V.A., Klocheva E.G., SHolomov I.I., Kuhcevich I.I., Zolkornyaev I.G., Belonogov M.A. Effektivnost' nejrometabolicheskogo protektora citoflavina pri infarktah mozga (mnogocentrovoe randomizirovannoe issledovanie). Glavvrach YUga Rossii. 2007; 1(9). (in Russ.)
6. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016; 32(19):3047—3048. doi:10.1093/bioinformatics/btw354
7. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525—527. doi:10.1038/nbt.3519
8. Schneider VA, Graves-Lindsay T, Howe K, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017; 27(5):849—864. doi:10.1101/gr.213611.116
9. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. doi:10.1186/s13059-014-0550-8
10. Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 — an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res. 2020; 9:ELIXIR-709. doi:10.12688/f1000research.24956.2
11. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3):100141. doi:10.1016/j.xinn.2021.100141
12. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014; 25(5):245—254. doi:10.1016/j.tem.2014.03.012
13. Thorin-Trescases N, Thorin E. Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev Mol Med. 2014; 16:e17. doi:10.1017/erm.2014.19
14. Chen L, Yu Z, Xie L, et al. ANGPTL2 binds MAG to efficiently enhance oligodendrocyte differentiation. Cell Biosci. 2023; 13(1):42. doi:10.1186/s13578-023-00970-3
15. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007; 100(6):1431—1448. doi:10.1111/j.1471-4159.2006.04319.x
16. Lopez PH. Role of myelin-associated glycoprotein (siglec-4a) in the nervous system. Adv Neurobiol. 2014; 9:245—262. doi:10.1007/978-1-4939-1154-7_11
17. Li Z, Yue M, Heng BC, Liu Y, Zhang P, Zhou Y. Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency. Int J Oral Sci. 2022; 14(1):54. doi:10.1038/s41368-022-00204-1
18. Vieira P, Cameron J, Rahikkala E, et al. Novel homozygous PCK1 mutation causing cytosolic phosphoenolpyruvate carboxykinase deficiency presenting as childhood hypoglycemia, an abnormal pattern of urine metabolites and liver dysfunction. Mol Genet Metab. 2017; 120(4):337—341. doi:10.1016/j.ymgme.2017.02.003
19. Xia Z, Chibnik LB, Glanz BI, et al. A putative Alzheimer's disease risk allele in PCK1 influences brain atrophy in multiple sclerosis. PLoS One. 2010; 5(11):e14169. doi:10.1371/journal.pone.0014169
20. Bochkareva L.A., Nedosugova L.V., Petunina N.A., Теlnova M.Е., Goncharova E.V. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes Мellitus. 2021; 24(4):334—341. doi.org/10.14341/DM12746. (in Russ.)
Review
For citations:
Igolkina A.A., Kusakin А.V., Skripchenko N.V., Vil'nic A.A., Alekseeva L.A., Bessonova T.V., Goleva O.V., Marchenko N.V., Irikova M.A., Chuhlovin A.B., Krylov A.V., Baziian E.V., Esmont Y.A., Glotov O.S. Analysis of gene expression in patients during acute cerebral insufficiency and late reconvalescence after severe neuroinfection. CHILDREN INFECTIONS. 2024;23(4):13-17. (In Russ.) https://doi.org/10.22627/2072-8107-2024-23-4-13-17